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A.......ct-This paper is concerned with an experimental determination of the longitudinal and the shear
wave velocities, (el ) and (C2), in a random particulate composite at both the 10111 and the short wavelength
limits. An extensive investigation of the problem has been carried out by using thirty-five specimens with
three different ball sizes and five different volume fractions of inclusions. Let 6 =Aia, where A is the
shortest of the four wavelengths and a is the inclusio/! radius. When 6~ I, the experiments were found to
be in aood aareement with the available lona-waveleflllh (or static) analyses; the wave propaption was
found to be fairly non-dispersive; and contrary to the key assumption of long-wavelengths, these theories
have been shown to be good down to 6=t.lS. When 6-I, the incident time-harmonic sinusoidal toneburst
is severely distorted; neither (CI ) nor (C2) could be measured. When 6 <c I, the distortion disappears, the
wave propagation becomes, once again, weakly dispersive, but (CI ) is sianificantly higher than its
lona-wavelength limit.

Finally, some evidence is presented which indicates that the wave-propagation may be occurring along
two separate branches: (\) the lower or the acoustical branch; and (2) the upper or the optical branch. These
are separated by a cut-off range of frequencies corresponding to 6'" I.

I. INTRODUCTION

Considerable advances have been made in the understanding of the mechanics of composite
materials in recent years. The man-made composites may be broadly classified into three
categories; plate, fibrous, and particulate composites. Whereas the first two have been studied
quite extensively, it is only recently that the particulate composites-consisting of particles of
one material embedded in the matrix of another-have begun to receive attention. Even here,
much of the work has been analytical in nature, A systematic experimental investigation of
ultrasonic wave propagation in a random particulate composite was reported in [I]. The
composite consisted of tiny spheres of glass of mean diameter 2a = OJ mm dispersed in an
epoxy matrix; the volume fraction of inclusion, t and the frequency, n, were varied in the
range 0.086 < t < 0.533 and OJ < n < 5MHz, respectively; there/ore all the data collected
belonged to the long-wavelength regime. The wavespeeds of the longitudinal and shear dis
turbances, (C.) and (C2), respectively, were measured. The principal conclusions of Ref. [I] are:

(I) (C1), (C2) data satisfy the static bounds due to Hashin and Shtrikman[6], Walpole [7] and
Miller [8].

(2) Of the several analyses [3-9] with which the experiment!' were compared, the identical,
independent, dynamic calculations of Datta[3] and Mal and Bose[S] appear to predict the
experiments with adequate engineering accuracy for all t and all n tested.

(3) Associated with any frequency n are four wavelengths ,\ .. '\2, A;, Ai where ( ) and ( )'
denote, respectively, the matrix and the inclusion material, and subscripts ( )1 and ( )2

denote, respectively, the longitudinal and shear disturbances. Let A= MINIMUM (A .. A2, AI,
Ai) and 6 =Ala, where a is the inclusion radius. For glass-epoxy combination 8 =~ (see Table
1 for constituent properties). One of the remarkable observations in Ref. [I] is that, in defiance
of the underlying assumption of very long-wavelengths common to all the analyses cited [3-9],
the agreement between the theories and the experiments remained quite good as 8 was
gradually decreased from very large values ("" 10) to a fairly small value 6 = 2.2. Note that
6 = 2 implies that the shol'test wavelength equals inclusion diameter. Unfortunately, due to
experimental limitations. data at even shorter wavelengths could not be collected.
55 Vol. 18. No. 5-A 367
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The objective of this paper is to extend the work reported in Ref. [1] into the short- wavelength
regime,

The composite studied here is exactly the same as in [1) i.e. glass spheres in TRACAST-3012
epoxy. The principal difference is that in order to probe simultaneously all three regimes of
interest (8 ~ I, 8 "" I, and 8 <E 1), much larger glass spheres of three different diameters, 2a :::; I or
2 or 3 mm were used; of course only one size was used in each specimen. In all, thirty-five
specimens with the three different ball sizes and five different volume fractions (5, 15, 25, 35
and 45% nominal) were fabricated and tested. (C1) and (C2) were measured over the frequency
range OJ < n < 3.0 MHz. Following observations are made from this fairly exhaustive study of
the problem.

(I) As expected, when 8~ I, good agreement between the long-wavelength analysis and the
experiments is observed.

(2) As 8 is gradually decreased the agreement remains quite good until 0 = 1.15, i,e, until the
shortest wavelength roughly equals the incusion radius.

(3) As 8 is further decreased a clearly defined transition in the dynamic mechanical behavior
of the composite is observed: (C1) increased suddenly and by large amounts. The transition
occurs somewhere in the vicinity of 8 = 1.

(4) As 8 becomes small compared to unity (C1) appears to reach a (higher) frequency
independent value.

(5) The wave propagation is shown to occur along two distinct branches: (I) The lower or
the acoustical branch; and (2) The upper or the optical branch. These are separated by a cut-off
zone, i.e. by a range of frequencies in which (CS and (C2) could not be measured.

(6) Finally, for 8 < I, the comparison between the long-wavelengths analyses and the
short-wavelength experiments is shown to become meaningless, as expected; even the bounds
are violated. Thus, the need for additional analytical work in the short-wavelength regime is
clearly identified.

2, EXPERIMENTAL PROCEDURES

The experimental procedures used in this investigation are similar to the ones reported in
Ref. [1]. Therefore, only a brief description is included in the following.

The through-transmission watet-immersion ultrasonic tank used in this investigation is
shown schematically in Fig. 1. The heart of this. apparatus is a pair of accurately matched (in
the sense of their frequency response) broad-band piezoelectric transducers. Let t =Obe the
instant at which the Time Mark Generator (Tek. TM 184) produces atri.ringpulse. The Pulse
Generator (Tek PO SOn/Function Generator (Tek.FG 502) combifiation then generates a
toneburst of the desired center-frequency (OJ < n < 3.0 MHz) and duration (I6-SO #LSec.). The
tone-burst is amplified by a radio-frequency Power Amplifier (either E.I.N. 310L or E.I.N.
AlSO) to a peak-to-~ak voltage of 40-300 volts and applied to the transmitting transducer. As a
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Fig. I. Schematic of the apparatus.
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result, a P-wave is launched in water towards the s1'eCimeh, the through-transmitted pulse is
detected by the receiver and displayed on the lower trace of the oscilloscope (Tek. 7<t(3) whose
triprins is delayed by an amount roughly equal to the time-of-ftight of the tone-burst between
the two transducers; this permits a detailed examination of the received signal. The delay-time
is measured accurately with a Universal Counter/Timer (Tek. DC SOSA) with an instrument
accuracy of ± I ns. All measurements are made with a specific peak near the center of the
toneburst where it had reached a steady state; this permits us to assume that the specimen is
undergoing steady time-harmonic motion. In most cases, the tone-burst consists of at least
twenty cycles; ten on either side of the specific peak.

With the specimen removed, let t. and t2 be respectively the arrival times of the specific
peak wehen the transducers are dl and d2 apart. Let t3 be the arrival time with the specimen in
place and the transducers d2 apart (here the P-wave is normally incident at the specimen); let
W be the specimen thickness. Then

(I)

where S implies slowness. Note that the first term on the right is S",-the slowness of sound in
water. When the shear velocity measurements were desired, the specimen was rotated about
the vertical axis to an angle, i > ieril where ierit is the angle of incidence beyond which no
P-wave is generated in the specimen: By Snell's law sin (ierit) = VjC" where V", =1/S,.. Then

(C2) = V", sin (r)/sin (i),

tan (r) = W sin (i)/[ W cos (i) - (12 -t3) V",],

(2)

(3)

where r is the angle of refraction of the shear wave. A systematic error analysis was reported in
[I). The accuracy depends most strongly on W: for the "worst" case, W::.: 6 mm and error
::.: 1.3%; for the "best" case, W::.: 24 mm and error == 0.5%; overall an accuracy of ± 1% is
claimed in both (CI ) and (C2) measurements.

2.1 Specimen preparation and material description
The experimental procedures for specimen preparation were-in their essential detail

similar to those described in [1]; their description, therefore, will be omitted here. One
exception is that in [1], since particle diameter 2a = 0.3 mm, a "layer" consisted of four
"sub-layers" each containing one sphere. In this work 2a = 1 or 2 or 3 mm, therefore the
sublayers were not necessary and each layer contained exactly one ball in the thickness
direction; the layer thickness is given by d = a(411'/3 C)Jl3. Secondly, an additional precaution
was observed in these experiments. Individual layers (before they were stacked and glued
together to form the final composite) were subjected to a crude quick visual photoelastic
examination under crossed-polaroids; the residual stresses at the sphere-matrix interface were
found to be compressive. This is quite consistent with the fact that during the curing process
the epoxy undergoes a shrinkage of about 5% whereas shrinkage of glass is relatively little.
Thus the assumption of welded-contact in all the analytical works quoted [3-9) is satisfied in our
experiments. The constituent properties are listed in Table I: the epoxy properties [10) were
measured in the laboratory; for glass the manufacturer's specifications [11] had to be relied
upon because we could not obtain the same chemical composition glass in the form of either a
sheet or a rod on which we could make our own ultrasonic measurements. The attenuation a of
the matrix (Nepers/mm) was found to be linearly increasing with n: a = mn; m is also reported

Table I. Constituent properties

Cl C2 P •
Material <_/..s) <_/..s) <Re,eu/_llII&)

TIlA-CAST 2.54 1.16 1.180 0.0456

Class 5.28 3.24 2.492 ReI11lillls
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in Table 1. Finally, in order to conduct an extensive experimental investigation of the problem,
thirty-five specimens with three different inclusion sizes (I, 2 or 3 mm dia.) and five different
volume fractions (5, 15, 25, 35 and 45% nominal) were manufactured and tested; a listing of
these specimens is included in Table 2.

3. RESULTS

3.1 Velocity measurements at long-wavelengths, 0~ I
Although the measurement of (C,) and (C2) at long-wavelengths was the province of Ref.

{I], these measurements were duplicated in the early stages of this work dUe to. the following
considerations. In Ref. [1], a =0.15 mm and the number of layers, I, in the direction of wave
propagation was typicaUy 30.lIere a =1, 2, or 3 mm and 3$I:s 16. Therefore, even though the
same constituents were used, there are significant differences in the manner in which the
theoretically treated "wave propagation in an unbounded medium" was modelled in Ref. {I] and in
this work. It is reassuring to note that after the data are suitably norr:talized (C1)/C, viewed as a
function of (; and 0) the agreement between the results of [1] and this work is excellent. Secondly,
the long-wavelength data was taken as a starting point for extension into the medium- and
short-wavelength regimes.

(C1) data collected at the longest wavelength is presented in Fig. 2; here 0, = 10.16, ~ = 4.64,
oj = 21.12, oi = 12.96, therefore, 0 = 4.64. Thus, the long-wavelength assumption is adequately
satisfied. Following observations are made: The independentlyobtained identical bounds due to
Hashin and Shtrikman{6] and Walpole{7] for a general two-phase material are satisfied. The
somewhat closer bounds, due to MiUer{8] in which the "inclusion" is confined to the shape of a
sphere are also satisfied. Since these are more relevant here, they are shown as solid lines. Note
that the bounds [fr-S] are static. The data are very much closer to the lower bound rather than to
the upper bound, which is not at all surprising, for as noted by Hashin[12]:

"... intuitively, for two materials with same volume fractions and same phase modulii,
where in the first the stiffer phase is a matrix while in the second the more compliant
phase is a matrix, the actual effective modulii of the first material will be closer to the
upper bound while those of the second will be closer to the lower bound."

For the case in hand the compliant phase constitutes the matrix. This aspect of Hashin's
conjecture concerning the lower bound, hasaJso been verified under a vastly different set of
acoustical conditions{2] where the composite consisted of lead spheres in an epoxy matrix so
that, in contrast to the glass-epoxy case the inertial mismatch is very high whereas the elastic
mismatch is not so large; the measurements, once again, were found to be very much closer to
the lower bound, although the spread between the bounds, expectedly, was not as large. Finally,
it may be of interest to report here that in experiments now in progress in which extremely thin

Table 2. Glass·tracast specimens

~
c'" J.. c

11c. ~ . 1_ Ball 2_ U 3 ..

~.L'''1 11 r.....c....odl
II t il c II t C II t.. OII..ured) klteull1'ed)

1 5.5 13.13 6 19 5.50 17;09" 4
05 2 5.35 11.87 10 20 6.02 12.70 3

16 5.17 8.69 4

3 15.70 6.07 4 12 16.46 11.96 4 15 is.35 18.06 4

15 4 15.70 12.17 8 13 15.81 24.16 8 33 is.54 13.41 3
5 13.95 7.67 6 25 16.60 12.17 4 35 15.42 36.04 8

26 16.3P 9.02 3

21 25.50 7.59 3 23 25.35 13.32 4

25 6 23.87 12.80 10 22 24.85 12.75 5 24 25.66 11.38 3
7 24.99 19.05 15

8 27.00 5.72 5 31 35.60 10.16 3
35 9 26.65 11.43 10 32 35.31 12.95 4

10 30.35 17.17 15

17 42.03 4.24 4 14 44.08 is.49 7 27 44.11 9.47 3

45 18 45.80 6.22 6 29 44.24 8.79 4 28 45.18 12.60 4

11 42.07 11.37 16 30 43.85 6.60 3 34 45.04 9.40 )
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elastic spherical shells of glass (compliant inc/u,wnlare embedded in a PMM,A (stiff) matrix,
the measurements are found to be very much closer to the upper bound, thUs'completing an
experimental verification of both aspects of the valuable conjecture by Hashin.

Retumina to Fi,. 2, the experiments aaree quite well with the dynamic calculations of
Datta{4] for only the dilute suspensions (the theory is claimed correct to O(C»; with the static
calculations of Chen and Acrivos [9] up to moderate concentrations (the theory is claimed
correct to OCC2»; and with the independent but identical dynamic calculations of Datta{3], and
Mal and Bose (5] up to concentrated suspensions (these theories are claimed correct at least to
0(C2».

It is also interesting to note that for the present case of a stiff inclusion the dynamic
calculation of [3, 5] is the same as the static lower bound of [6, 7]; for a compliant inclusion the
sameness carries over to the upper bound. Although some additional observations will be made
in tbe sequel, tbe preceding remarks also apply to tbe long-wavelength data in Figs. 3-5 where 6
is, respectively, 2.32, J.54 and 1.16.

2.2
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Fig. 2. Longitudinal phase velocity vs volume fraction (at = 10.16. 6z =a=4.64. aj = 21.12. ai =12.96).

1& 2.321

6 ExplZTimantol (0.5MHz.
o=1.Omm)

2.0 -- R<2fl2rencas [3.5J

--- - RafaNtlC<2 [9]

" Exprzrimentol (1.0 MHz,
o=O.5mm)r 1.8

o ~ 00 100
C{-Io) ..

Fig. 3. Longitudinal phase velocity vs volume fraction (al =5.08. 6z =a=2.32. a; '" 10.56. ai =6.481.
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(C,) data at ~ :: 2.32 is shown in Fig. 3; here 01:: 5.08, 8z ( :: 0):: 2.32, oj =10.56,02 =6.48.
For reasons of corroboration redundant measurements were made; 1mm dia. balls were tested
at 1.0MHz whereas 2 mm dia. balls were tested at 0.5 MHz. The comparison, within:!: l%,is
considered excellent. With reference to Fig. 4 (0 =1.54) and Fig. 5 (0:: 1.16) a surprising
observation is that tbe comparison between tbetbeory and the eXPeriment is poorer at the
higher 0:: 1.54. A plausible conjecture is that 0:::: 1.54 may be close to one of the resonant
frequencies. 0:::: 8z == 1.54 implies kiD :::: 1.86. Reference is now made to the work by Flax and
Uberall [l3} with the emphasis that they considered the case of a single inclusion in an
unbounded medium. From the numerical results for the case of an iron sphere in aluminum,iUs
seen that the lowest of the infinitely many resonant frequencies occurs around k, a = 0.5.

When 0 is decreased even further to 1.16 in Fig. 4, the comparison between the theory and
the experiment becomes reasonably good again. (The only exception of t::i 45% may be

22

2J) --Rrlf(l/"C!ncl2!>[3.5]

- - - - - Rczfcznznca[ 9 J

t
1.8 " ExplZrimcmtal (0.5MHz.
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~
C,

1.4

" "
~,

1.2

1.0

o 40 60 80 100

C(O!o) -

Fig. 4. Longitudinal phase velocity vs volume fraction (01 "" 3.38. S:z '" S"" 1.54, S; '" 7.04. <5i '" 432).
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1.6 a" 1.0mm)

<£J) IE&lc,
1.4

'" ...-...-

" ... ...
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Fig. 5. Longitudinal phase velocity vs volume fraction (8, "" 2.54, S:z "" <5 "" 1.16, 8; '" 5.28. Si'" 3.24).
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attributed to the fact that here a large fraction of spheres are in direct contact; see Modelling
Errors in Appendix I.) Note that here, again, redundant data were collected: a = 0.5 mm at
2.0 MHz and a =1.0 mm at 1.0 MHz.

Shear velocity measurements. In Ref. [I), (C2) could be measured only for one value of 8,
namely 8 =8, primarily for the following reasons: (I) In our method of measuring (C2), the
shear disturbance in the composite is accompanied by a P -+ S and an S -+ P mode conversion
with high attendant losses; (2) The scattering cross-section of a sphere, y, is much higher for
incident S-wave as compared to an incident P-wave[17]. Thus, (a2) > (al). (Recall a is
attenuation); (3) (a) increases as a decreases. (If, for the sake of argument, one neglects the
multiple interaction effects, then (a) = (1/2) N 'Y1Ta2, when N is the scatterer density. Since
C= (4/3) 1T a3 N, (a) = (3/8) yCla.) Thus, the signal received in [I] for the case of (C2) was very
weak.

By increasing a from 150 #Lm in [I] to 0.5, 1.0 and 1.5 mm in this work, the attenuation (a2)
decreased sufficiently to permit us to measure (C2) at three smaller values of 8, namely, 4.64,
2.32 and U5; these are shown, respectively, in Figs. 6-8. The remarks concerning the
agreement between the long-wavelength theories and the experiments made in the foregoing in
connection with (CI ) generally apply to (C2) as well and will not be repeated. Some additional
observations are noted next: (I) For 8 = 4.64 (Fig. 2 vs 6) and ~ = 2.32 (Fig. 3 vs 7) the
(Cl)-agreement is much better than the (C2)-agreement. (2) Contrary to expectations the
agreement between the theory and the experiment for the case of (C2) gets monotonically better
as 8 decreases: the comparison may be labelled "excellent" for the smallest 8 = l.l5. We are
unable to offer any satisfactory explanation for these rather surprising observations. Finally,
note that (C2) is much more sensitive to t than is (CI ).

Before leaving the subject of composite behavior at long wavelengths, a general observation
is in order. With collective reference to Figs. 2-8 here and Figs. 3-7 of Ref. [1] it is concluded
that the agreement between the experiments and the long- wavelength analyses [3, 5-9] may be
considered good down to 8 = l.l5 (kla =2.35, k2a =5.37) or, say, 8"" 1; note that this is true
across the entire range of volume fractions except, perhaps, at high t and low 8. This
observation is quite remarkable, because 8 =1 implies wavelength equals inclusion radius.
Thus, these experiments have served another useful purpose in that the range of validity of the
long-wavelength theories has been shown to be much wider than had been anticipated on
analytical grounds: the theories are claimed to be accurate when ka ~ 1, where k is anyone of
the four wavenumbers kit k2, ki, k2.
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3.2 Velocity measurements at intermediate wavelengths ~ "" 1
Efforts to measure (C1} and (C2) in the range 0.77:$ 8:$ US failed. The experimental

reasons accompanying the failure are considered both interesting and worth reporting.
However, this discussion is deferred to Appendix 2.

3.3 Velocity measurements at short-wavelengths, ~ <I
In this section it will be shown that when 8 < 1the comparison between the experimentally

measured (C1) and the predictions of the long-wavelength analyses completely and abruptly
breaks down and that the transition occurs somewhere in the vicinity of 8 = I.

(C1) vs tat 8 = 0.17,0.58 and 0.385 are shown collectively in Fig. 9. Firstly, with reference
to Figs. 2-5 note that there is a finite positive jump in (C1} for all t; this jump is all the more
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Fig. 7. Shear phase velocity vs volume fraction (01 = 5.08. ~ = ~ = 0=2.32,0; = 10.56. S~ = 6.48).
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Fig. 9. When wavelength is small compared to the inclusion radius the longitudinal velocity violates the
static bounds.

surprising at low C=5%. The increase is of the order of 20-40% (see 1% measurement error).
Secondly, (Ct ) appears to be a linear function of Cfor aU three 8. However, it is believed that
this apparent linearity is a mere coincidence for the following simple reason: As C-+O, (C,}/C\
must-+ 1.0; as C-+ 1.0, (C.}/C. must-+ CjJC. =2.08, regardless of 8. The bounds [6-8) are also
shown in this figure, more for contrast than for comparison. (Recall that calculations of [3, 5)
are the same as the lower bound of [6, 7).) The measurements, which used to cluster around the
lower bound for 8"1, have now exceeded the upper bound. Clearly, the long-wavelength
analyses are not at all applicable when 8 < 1. Finally, it appears that as 8-+0 (very high
frequencies) (C.) approaches a constant value; this is explored further in Section 3.4.

3.4 Frequency-wavenumber relationship
Moon and Mow[l4) considered wave propagation, at long-wavelengths, in a random

homogeneous rigid-particulate composite under the following key assumptions: (1) Inclusions
are very heavy, i.e. p'lp" I; (2) Suspension is dilute, C« I, i.e. multiple interaction elects are
completely ipored. Clearly, the present experiments do not conform to the key assumptions of
the theory: a quantitative comparison was, in fact, found to be extremely poor. However, there
is one aspect of Moon and Mow's work which is of interest here. They postulated the existence
of two distinct branches along which wave propagation can occur; these are the familiar
acoustical (or lower) branch and the optical (or upper) branch separated by a cut-ol frequency,
fie, see Fig. 2 of Ref. (14). fie represents the natural oscillatory frequency of the spherical
particles in their elastic surroundings. In other words, fie is due to individual particle dynamics.
At the risk of stating the obvious, we emphasize that this (single) fie in a random composite
should be distiAJUished from the (infinitely many) cut-ol frequencies in a periodic composite.
The latter are due to destructive interference of the waves scattered by the particles located in
a periodic structure. In other words, these are due to lattice dynamics. In the following, we
present some evidence which sUIICsts that the wave propagation in our experiments may, in
fact, be occurrins along these two branches.

We introduce a dimensionless frequency, 0, and a dimensionless wavenumber, e, by:

(4)

then Ole = (C,)/C. = p(say). 0 vs e for various C are shown in Fig. 10. Note that only
C=5% is shown correctly to scale on the right. For clarity, the remaining C curves have
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Fig. 10. 0 vs f plots reveal the acoustical and the optical branches. Hypothetical lines of extension when
the radiation damping is absent (- - - -) and when it is present (. ... ). Only t =5% shown correctly to scale

on the right. Remaining t shifted by 0.5 on the O-scale.

each been shifted by 0.5 on the O-scale; no shifting has been done on the ~-scale. n =0 for
each Cis indicated on the left. Attention is first drawn to the case C= 15%. Even though it may
not appear to be so, the slopes of the two branches are significantly different: As n .... 0,
{J = 1.02 (lower branch); at 0 =7.46, {J = 1.36 (upper branch). Following Moon and Mow, Fig. 2
of Ref. [14], the broken lines are hypothetical extensions of the two branchesfor the case when
radiation damping is absent. As it is, the radiation damping is quite strong in our experiments
due to the high volume fraction and the multiple interaction effects; the dotted line is the
corresponding hypothetical extension. In order to bring out more clearly the frequency
dependence of velocity, {J is plotted vs 0 in Fig. I J.t Attention is now drawn to the
corresponding curve (C = 15%) in Fig. I I. When 0 < 2.5 the wave propagation is weakly
dispersive. The range 2.5 < 0 < 3.75 is labelled as the "forbidden zone" in the sense that (CII
could not be measured due to severe harmonic distortion. When 0> 3.75, where (CII
measurements could be resumed, (J takes a large positive jump (over its value for smaHfl),
wave propagation becomes, once again, weakly dispersive, and {J appears to reach a frequency
independent value at high frequencies.

Admittedly, the evidence is not sufficiently convincing to permit one to state unequivocally
that the wave propagation is occuring along the two separate branches postulated by Moon and
Mow. Nevertheless, it is clear that there are significant differences in the behavior ofJhe
composite in going from the low-frequency regime (0 < 2.5) to the higbfrequency regime
(0) 3.75). To the extent that the approximate theory of Moon and Mow (rigid particles, dilute
concentration) is applicable to the present experiments, we are led to conjecture that, iriFig. 10,
the lower curve is the acoustical branch and the upper curve is the optical braJ'lch.

Essentially the same remarks apply to the C= 5% curve in Fig. 10 and 1I. However, for
C~ 25% curves, the wave propagation in the low-frequency regime becomes increasingly more

t(1) Only t =5% is drawn correctly to scale on the right. For clarity, the remaining ('-curves are shifted by 1.0 on the
p-scale. There is no shifting on the fi-scale, however. (2) Whenever two values of pare plotted against the same n. it
implies that two different specimens were !1sed. The difference is, generally, more due to model.ling. errors than the
measurement errors. (3) Additional data for C =5% for large 0 could not be collected due to harmOniC distortion. (4) data
from Ref. [Ilhas been used to supplement the data collected in this work. (5) The values of fJ at n= 0 are calculated from
Ref. (~J.
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dispersive as t is increased. The following is offered as a plausible explanation. Flax and
Oberall[l3] have studied the resonant scattering of elastic waves from a spherical elastic
inclusion in an unbounded medium. They showed that there is a doubly-infinite series of
resonant frequencies and that for the case of an iron sphere in an aluminum matrix, the smallest
of these occurs at about k1a =0.5. We conjecture that the particle resonance is responsible for
the dispersion along the acoustical branch. It follows that the observed dispersion should
increase with t (more balls); this is borne out by the experiments.

Attention is now turned to the "forbidden zone", 2.5 <0 < 3.75. Following plausible
scenario is offered as an explanation for failure to measure wave velocities (see also Appendix
-2). In this range, the wave propagation is controlled by the particle resonances. Since the
resonant frequencies are closely spaced (see Fig. 4 of Ref. [13] and also Appendix H of Ref.
[lSD, for any excitation or tone-burst frequency n in this range, there will be one or more
resonant frequencies in the neighborhood. Since, a tone-burst is never a pure monochromatic
wave, these resonant modes will be excited; also the scattering cross-section of a particle
becomes large at or near its natural frequency. The received signal will be a superposition of
the incident frequency and the excited resonant frequencies. This may very well be the reason
for the observed harmonic distortion (see Fig. AI). This conjectured scenario is also consistent
with another observation. Since this range was carefully probed with small increments in n. the
amplitude of the received signal (the central portion away from the transients at the head and
the tail of the toneburst) was seen to undergo large (order of magnitude) and rapid fluctuations
with n. This may be happening because when n coincides with one of the dominant resonant
modes, the scattering cross-section (and hence the composite attenuation (a)) becomes very
large. The fact that when this phenomenon was observed the transients at the two ends of the
toneburst were observed to be relatively very, very large (by one or two orders ofmagnitude)
lends further credibility to this conjecture.

Finally. the numerical values of all the data presented in this work may be found in
Appendix 3.

4. CONCLUSIONS

Ultrasonic wave propagation in a random particulate composite has been studied exten
sively in both the long and short wavelength limits. Thirty-five specimens with three different
ball sizes and five different volume fractions were used. The phase velocities of the longitudinal
«Cl » and the shear ({C~) waves were measured. In the 100l-wavelenath limit (, J> I) the wave
propaption is fairly ROn-dispersive and the experiments asree quite well with the available
long-wavelength (or static) theories. In defiance of the key assumption of long wavelengths
(infinite wavelengths for the static cases) these theories have been shown to be good down to
8=1.15. At the intermediate wavelengths, 8 "'1. the incident wave suffers from severe
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harmonic distorsion; neither (CI ) nor (C2) could be measured. When 8 < 0.77, the distortion
disappears, the wave propagation becomes, once again, weakly dispersive, and (C,) is
significantly and consistently higher than its long-wavelength limit.

When the velocity data is recast in the form of a dimensionless frequency vs a dimension
less wavenumber, it reveals what appear to be two distinct branches of wave propagation: (l)

the lower or the acoustical branch, and (2) the upper or the optical branch.
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APPENDIX I
(l) Modellillg mors

In addition to the errors of measurement (:!: 1% in (Cll and (e2)) there are modelling errors present. These are: (\) In
spite of all the precautions, direct contact between a small fraction of spheres could not be avoided. The theories cited in
this work assume no direct contact. Heuristically, one would expect this source to cause measured {Cll to be somewhat
higher than the calculated (Cll particularly at high volume fractions. This is borne out by the experirnenls;(2) The theories
treat unbounded media; the specimens have a finite number of layers in the direction of wave propagation. In the
experiments when the P-wave in water strikes the specimen, the refracted wave must interact with a certain number of
layers before the theoretically assumed effective plane wave is fully established. This phenomenon is often referred 1'0 as
the boundary layer el/tet. A dirtc! measurement of this effect is beyond the scope of this work. Nevertheless, wherever
possible experiments were carried out to estimate the eff~ct of the boundary layer on the measured quantities. These are
described in Section 2 below. (3) Finally, we had to assume. of necessity, that when a plane wave in water strikes the
specimen boundary, the refracted P- and S- waves are also plane.

(2) The Boundary layer effect •
For the case of I mm spheres, three specimens were prepared for each C, except 25%, see Table 2. The three

independent measurements of velocity were found to asree within 1%. (Occasionall~, the errors were bigher, but these m~y
be attributed to the fact that the precise (measured) Cis neverexaetly the same for two specimens of same nominal C.)
Therefore, the boundary layer elect is neglip"bly small for the Illlm sphere speclmens. Acorollary is that 1= 3 serves as
an empirical upper bound on the boundary layer thickness (BLT) (note Imit! =4). Now, in principle, a e10ser upper boWld on
BLT can be placed by conducting similar experiments on successively thinner specimens, i.e. I ~ 3. In practice, this could
not be done for the follOWing reasons. In the present method of measurement, in addition to the l'hrwgh·Transmitted·
Pulse <TPP), the receiver also detects a sequence of TIRPS's (Twice Internally Relected Pulses) at a time interval of
21t1{C,). The following data-rejection criterion was used throuahoul tbis work: If the TIP had not reached sleady state
prior to the arrival of the first TIRP, the data was rejected. It is for these reasons that velocity could not be measured with
1mm sphere specimens fof 1<4. Finally, since I varied from 4 to 16 (for I mm sphere specimens), boundary layer effect
was never a problem.
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In the early slqe5 of this work. 2mmand3mm spec~llswere alsof~i<:ate4 with a larae I (/-10). With the
exception of very low frequellCies. satisfactOry measurements ColiIdnot he made hecause of very low received sianals
(SOIlICtimes less tban I millivolt) due to the followi" reasons. Thictness of a layer is Jiven by d = Q (4lr13C!11l i.e.• d is
proportioaal to Q. W = Id. Total attenuation is e-<· ~ Therefore. for 2 and 3mm specimens the bulk of the data was
collected with undesirably thin specimens of I = 3 and I = 4. Followilll precautions were taken to ensure apinst the errors
due to the bouttdary layer dect: (I) Two independent velocity measurements were made for each C; the data was
aenerally found to aaree within 1%. Note tbat TIRP is Ionaer a problem here due to illCreased W. (2) Specimen preparation
is a very time consumifll process. Therefore. as much as possible it was desirable to use the same specimen Kross the
entire frequency ra. «4) illCreases almost linearly with II. set Ref. (I D; hence. small I. But. occasiollally. {M .Ite plUPOse
o{ colibro.ioll thicker 2mm and 3mm specimens were also made. see specimen 13 (I = 8). 14 (I = 7) and 35 (I =8) in Table
2. Together with the 3- and 4· layer specimens of the same t. these calibration specimens were tested only at low
frequencies. It was reassuring to note tbat the velocity measuremeats ....eed. once apin within 1%.

Admittedly, we have been unable to measure ditec:tJy the error (if any) produc:ecl by the ubiquitous boundary layer.
Nevertheless, from the numerous precautioury atId redundellt measurements discussed in the foregoing we are led to
conclude tbat this error is small and may be subsumed in the I" error of measurement.

APPENDIX 2
Experimental reasons for failure of (C.) and (Ct> measurements at intermediate wavelenaths. 6 ... I.
As described in the Experimental Procedures all measurements are made with a specific peak in the incident signal

received throulh water. The some pt41c is later identiIIed in the toIleburst received throuah the specimen. Whenever an
unequivocal one·to-one correspondellCe between die peats of the IpS is not possible. data is rejected.

For 6.. I this correspondence was never a problem: a typica!sp thro.... a specimen for 6 = 1.54 is shown in Fig.
Al(a). The correspondifll through·the-water sipalloob very much alike and is not shown. As 6 is gradually decreased
below U5 an additional peak is seen to emerae. TIais peak bqias to take a mote and more definite shape as 8 is further
decreased. At the same time the entire waveform lIDdtrps a........., increasing distortion. At 6 = 0.96 the state of affairs
may be seen in Fig. Al(b). Note, in particular. the 4Mitialt4lpe1k around the 2em.location. Since a peak can be located
only relative to the head of the pulse the unequivocal correspoaclellCe mentioned earlier cannot be established here;
therefore, data was not collected. As 8 is further decreased. the peak "marches forward" towards the head of the pulse
while simUltaneously moving up and down the waveform. Finally. around 6 .. 0.8 the additional peak clears the head of the
toncburs!: at 6 = 0.325 the received sianal is shown in Fia. Al(c). The important point here is tbat even in the presence of
this "fore-runner wave", an "unequivocal correspondence" could be established and the process of data collection
resumed: reducing the duration of the toneburst down to Oll/Y olle {III/ cycle was taken as a starting point for this operation.

Shear wave measurements
Unlike (C.), (C2) could not be measured for any 6< 1.15. In addition to the waveform distortion, (C2) measurements

suffer from another problem. When 8 J> 1, (C.) is measured first and then the critical angle of incidence beyond which

(a)

(b)

(c)

Fig. AI. Signal received with a specimen with o=1.5mm, C=25.4%, and (a) 6=1.54 (0=1.86), (h)
8=0.96 (0 =2.99), and (c) 6 = 0.325 (0 = 8.84).
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P·wave is not generated in the composite is calculated by the Snell's law: icril = Sin-I (Vw!(C,)). Then(C~ i~ measured at
some i> i<ri!' The Snell's law Was found to be satisfied when 6.. 1. On the other hand for 6< US the Snell'slaw was
found to be violated in the followm, sense. Figure A2(a) shows incident signalthrouah waler; lhe lone·bursl has been
purposely shrunk to only two cycles to preserve clarity. The calculated icrn for this particlllar situation is 31". For
i,. 37" > im. the received signal is shown in Fig. A2(b). The two received siglllis correspond. sequentially, to the rdracted
p. and S·wave. Had 6 been ~ I, P-wave would have completely disappeared. As it is its amplitude is roughly the same as
lhat of the shear wave, thus disallowing (C2) measurements with a toneburst of 10 or 20 cycles. Note that one could go
ahead and measure {C~ with a 2-cycle toneburst. However, it is very difl\cult to iudac how badly the assumptionofsteady
time harmonic motion of the specimen is violated in that case and, therefore, data coll~ction was not carried out.

( a)

Fig. A2. Violation of Snell's Law. (a) Signal received throuah waler. (b) p. and S-waves received through
the specimen for an angle of incidence i =37" which is greater than icrit =31°.

APPENDIX 3. NUMERICAL VALUES OF DATA

c- ~% C- 1~% C- 2~%
a 8 ( ..- a 8 ( ..... Il 8 ( .....
.62 1.01 .61 O.~ .62 1.02 .61 O.~ .62 1.12 .~5 O.~

1. 24 1.01 1.22 O.~ 1.24 1.07 1.16 O.~ 1.24 1.07 1.16 O.~

1. 24 1.01 1. 22 1.0 1.24 1.07 1.16 o.~ 1.24 1.09 1.14 LO
1.87 1.03 1.81 1.~ 1.24 1.04 1.19 1.0 1.87 1.1~ 1. 62 1.5
2.48 1.02 2.42 0.5 2.48 1.08 2.29 0.5 2.108 l.ll 2.23 0.5
2.48 1.01 2;45 1.0 2.48 1.07 2.31 0.5 2.48 1.ll 2.23 1.0
4,95 1.25 3.96 1.0 2.48 1.0~ 2.36 1.0 3.73 1.36 2.74 1.5

3.73 1.22 3.0~ 1.~ 4.9~ 1.45 3.42 1.0
Froll [1]

4;9~ 1.32 3. 7~ 1.0 7.46 1.41 ~.29 1.5
.15 1.01 .15 0.15 7.46 1.36 ~.48 1.5
.30 1.01 .30 0.1~

e.S3%..50 1.03 .47 0.15 C·451 Ref. [1]
.65 1.03 .63 0.15 n A [ e.- g A , .-
.85 1.03 .83 0.15 .62 1.18 .52 0.5 .15 1.37 .ll 0.15

1.30 1.04 1.25 0.15 1.24 1.13 1.09 O.~ .30 1.30 .23 0.15
1.50 1.05 1.43 0.15 1.24 1.11 loll 0.5 .50 1.28 .39 0.15
L85 LOS 1. 76 0.15 1.87 1.26 1.48 1.5 .65 1.25 .52 0.15

2.48 1.28 1.93 0.5 .85 1.26 .67 0.15
~ - 35% 2.48 1.36 1.82 1.0 1.30 1.27 1. 02 0.15

Il 8 £ ..... 3.73 1.53 2.44 1.5 ........... <c·>lc, .-0.5_L08 0.5 3.ll LO1.24 1.14 4.95 L59
.L~"'! ;0.62 -1.24 2.411L87 1.28 L46 1.5 7.46 1.51 4.94 1.5

3.73 1.50 2.48 1.5
4.95 1.53 3.23 1.0 Pr01I [1] 5 - 1.03 1.03
,7.46 1 46 5.10 1,2. 15 1.16 1.16 1.12

.15 1.14 .1.3 0.15 25 1.21 1.26 1.16
Froll ill .30 1.29 .23 0.15 3S L36 1. 29 -

.15 1.07 .14 0.15 .50 1.27 .39 0.15 45 1.41 1.32 1.34

.30 1.18 .25 0.15 .85 1.24 .69 0.15

.50 1.21 .41 0.15 1.30 1.n 1.07 0.15

.65 1.17 .56 0.15 1.60 1.22 1.31 0.15

.85 1.15 .74 0.15
1.30 1.16 .81 0.15
1.60 1.15 1.39 0.15


